Amperometric biosensor based on reductive H2O2 detection using pentacyanoferrate-bound polymer for creatinine determination.
نویسندگان
چکیده
Pentacyanoferrate-bound poly(1-vinylimidazole) (PVI[Fe(CN)5]) was selected as a mediator for amperometric creatinine determination based on the reductive H2O2 detection. Creatinine amidohydrolase (CNH), creatine amidohydrolase (CRH), sarcosine oxidase (SOD), peroxidase (POD), and PVI[Fe(CN)5] were crosslinked with poly(ethylene glycol) diglycidyl ether (PEGDGE) on a glassy carbon (GC) electrode for a creatinine biosensor fabrication. Reduction current was monitored at -0.1V in the presence of creatinine and O2. It is revealed that PVI[Fe(CN)5] is suitable as a mediator for a bioelectrocatalytic reaction of POD, since PVI[Fe(CN)5] neither reacts with reactants nor works as an electron acceptor of SOD. The amounts of PVI[Fe(CN)5], PEGDGE, and enzymes were optimized toward creatinine detection. Nafion as a protecting film successfully prevented the enzyme layer from interferences. The detection limit and linear range in creatinine determination were 12μM and 12-500μM (R(2)=0.993), respectively, and the sensitivity was 11mAcm(-2)M(-1), which is applicable for urine creatinine tests. The results of the creatinine determination for four urine samples measured with this proposed method were compared with Jaffe method, and a good correlation was obtained between the results.
منابع مشابه
Creatinine Biosensor Based on Reductive H2O2 Detection Using Pentacyanoferrate-bound Polymer
Creatinine is the final product of creatine metabolism in muscle of mammals, and mainly filtered out of blood in kidneys. The creatinine levels are related to the state of renal function, thyroid malfunction and muscular disorders. This indicates the importance of creatinine measurements in blood or urine. The current clinical determination of creatinine is based on Jaffe reaction [1]. However,...
متن کاملSensitive D-amino acid biosensor based on oxidase/peroxidase system mediated by pentacyanoferrate-bound polymer.
A sensitive d-amino acid oxidase (DAAO)/peroxidase (POD) bienzyme biosensor is constructed, in which pentacyanoferrate-bound poly(1-vinylimidazole) polymer (PVI[Fe(CN)5]) is selected as a mediator. Reductive current of PVI[Fe(CN)5] related to the H2O2 concentration generated in the DAAO reaction was measured at -0.1V vs. Ag|AgCl with DAAO/POD/PVI[Fe(CN)5]-modified electrode. The result revealed...
متن کاملDetection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor
Hydrogen peroxide (H2O2) is known to be generated in Photosystem II (PSII) via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red (AR) has been used but is known to either lack specifi...
متن کاملComparison between Amperometric and Chemiluminescence methods in detection and dosimetry of cobalt-60 gamma ray emission
Background: Hydrogen peroxide (H2O2), produced by gamma ray irradiation to watery solution, was used as an analytical parameter for dosimetry of cobalt-60 (60Co) radiation. Materials and Methods: Detection of the produced H2O2 was carried out using two methods: an amperometric biosensor fabricated by immobilization of anthraquinone 2-carboxylic acid modified horseradish peroxidase on glassy car...
متن کاملA H2O2 Biosensor Based on Immobilization of Horseradish Peroxidase in a Gelatine Network Matrix
A simple and promising H2O2 biosensor has been developed by successful entrapment of horseradish peroxidase (HRP) in a gelatine matrix which was cross-linked with formaldehyde. The large microscopic surface area and porous morphology of the gelatine matrix lead to high enzyme loading and the enzyme entrapped in this matrix can retain its bioactivity. This biosensor exhibited a fast amperometric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytica chimica acta
دوره 767 شماره
صفحات -
تاریخ انتشار 2013